Microhabitat conditions affect web-building spider communities and their prey independent of effects of short-term wildlife fencing on forest vegetation

Fredrik Arvidsson, Melanie S. Montes and Klaus Birkhofer:
Department of Ecology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 6, 03046 Cottbus; E-mail: f.arvidsson@hotmail.com

Abstract. Spiders play a key role in forest food webs, where they regulate decomposer populations and may act as predators of pests and disease vectors. Spider community composition is determined in part by vegetation structure. Therefore, the exclusion of large mammals, such as deer and wild boar, through wildlife fencing may affect the composition of spider communities and their prey in forest ecosystems. Web-building spiders and their prey were hand-collected in plots that had been fenced for three years, as well as adjacent unfenced plots in a mixed temperate forest in north-eastern Germany. Additionally, spiders in the leaf litter were sampled in fenced and unfenced subareas by sieving litter. Wildlife fencing did not significantly affect spider densities or community composition per microhabitat. However, fencing affected the cover of different microhabitats significantly as there was a higher density of larger trees and higher leaf litter cover in fenced plots while there was a higher percentage of bare ground and deadwood in unfenced plots. Spider communities and their prey composition differed significantly between microhabitats (deciduous trees, coniferous trees, dead wood, understory vegetation, leaf litter) independent of fencing. Thysanoptera prey was mainly caught by spiders on coniferous trees and in the understory vegetation. Heteroptera prey were captured most frequently in the understory vegetation while Hymenoptera (excl. Formicidae) prey were mostly caught on deciduous trees. Several spider species showed a preference between deciduous and coniferous trees in the mixed forest. Wildlife fencing alters the vegetation structure of mixed forests and has indirect effects on spider communities and their role in forest food webs due to alteration of microhabitat availability.

Keywords: Araneae, browsing, predator-prey interactions, prey composition, vegetation structure

Spiders play a key role in forest food webs, where they regulate decomposer populations and may act as predators of pests and disease vectors. Spider community composition is determined in part by vegetation structure. Therefore, the exclusion of large mammals, such as deer and wild boar, through wildlife fencing may affect the composition of spider communities and their prey in forest ecosystems. Web-building spiders and their prey were hand-collected in plots that had been fenced for three years, as well as adjacent unfenced plots in a mixed temperate forest in north-eastern Germany. Additionally, spiders in the leaf litter were sampled in fenced and unfenced subareas by sieving litter. Wildlife fencing did not significantly affect spider densities or community composition per microhabitat. However, fencing affected the cover of different microhabitats significantly as there was a higher density of larger trees and higher leaf litter cover in fenced plots while there was a higher percentage of bare ground and deadwood in unfenced plots. Spider communities and their prey composition differed significantly between microhabitats (deciduous trees, coniferous trees, dead wood, understory vegetation, leaf litter) independent of fencing. Thysanoptera prey was mainly caught by spiders on coniferous trees and in the understory vegetation. Heteroptera prey were captured most frequently in the understory vegetation while Hymenoptera (excl. Formicidae) prey were mostly caught on deciduous trees. Several spider species showed a preference between deciduous and coniferous trees in the mixed forest. Wildlife fencing alters the vegetation structure of mixed forests and has indirect effects on spider communities and their role in forest food webs due to alteration of microhabitat availability.

Few studies have addressed the effects of mammal grazing or foraging on spider communities in forest ecosystems. Ground-dwelling spider species richness and abundance varies with tree canopy coverage. Canopy gaps in plantation forests support a higher species richness and abundance than areas with closed canopy (Oxbrough et al. 2006). Landsman & Bowman (2017) found that deer exclusion resulted in higher structural habitat complexity, but reduced species richness of hunting and web-building spider communities locally. Bucher et al. (2021) showed pronounced effects of deer exclusion on vegetation properties, with lower abundances of sheet-web weavers in enclosures. Both previous publications highlight the effect of deer fencing on spider and potential prey communities (Landsman & Bowman 2017; Bucher et al. 2021) but did not analyse the actual effects of fencing on spider prey composition. Current increases in wildlife fencing in Europe, partly due to the construction of fences to prevent the spread of the African Swine Flu (Jori et al. 2021) and partly to protect newly planted deciduous trees from browsing (Löf et al. 2010) emphasize the need to better understand the effects of fencing on non-target species that play a dominant role in forest food-webs.
Exclusion of mammalian herbivores could result in structurally more complex habitats with a higher diversity of available microhabitats for web-building spiders, thereby potentially increasing their abundance and richness. Reduced disturbance, on the other hand, could also lead to a more uniform forest structure with a reduced variety of microhabitats and lower spider species richness. The current study aimed to answer the following questions: (1) how does deer fencing affect spider community composition after three years? and (2) does fencing affect the availability and composition of prey caught by web-building spiders? We hypothesize that fencing (H1) increases the vegetation structure and directly promotes the richness and abundance of local web-building spider communities, and that (H2) prey availability and composition of prey are more diverse in fenced areas.

METHODS

Research site.—The study was conducted in a mixed forest in the Havelland district in north-eastern Germany (Federal state of Brandenburg, coordinates: 52° 54’ 66” N, 12° 06’ 47” E). The studied forest area is located next to the field station Linde owned by the Zwillenberg-Tietz Foundation (https://www.zwillenberg-tietz-stiftung.de/). The forest is dominated by Scots pine (Pinus sylvestris) growing on sandy soil. Three deer species are present in the study area: European fallow deer (Dama dama (Linnaeus, 1758)), Red deer (Cervus elaphus Linnaeus, 1758) and Roe deer (Capreolus capreolus (Linnaeus, 1758)). Fenced plots were established throughout the forest as part of a previous research project, and fences had been in place for three years at the time of spider sampling. Fences were constructed of chain link fencing wrapped around wooden poles and had a total height of 2 meters. To measure the effect of fencing on spiders, a total of 11 fenced treatment plots and 11 adjacent unfenced control plots of the same size were established. All plots had a size of 10 × 10 meters and the control plots were always paired with directly adjacent treatment plots in order to reduce confounding effects of large-scale habitat differences.

Sampling.—Sampling was conducted between the 12th of May to the 21st of June, 2019 as a peak season for adult spiders. In order to estimate the microhabitat and vegetation structure of each plot, vegetation data was collected in a standardized way. Five 1 × 1 meter quadrats were randomly placed inside each plot and eight microhabitat properties were recorded as the percentage coverage with (1) leaf litter, (2) grass, (3) herbs, (4) mosses, (5) deadwood and (6) bare ground by visual estimation. In addition, (7) the number of trees with a height above 2 meters was counted and the (8) tree diameter at breast height (DBH) was recorded for all trees in the 10 × 10 m plots. Large disturbances in the plot, such as fallen trees and soil disturbance by animals, were also recorded.

Web-building spiders and their prey were collected by visually searching each plot for 45 minutes at each of two separate occasions throughout the sampling season. Hand-collected spiders and their prey were searched for in the following microhabitats: (1) bark and branches of deciduous trees, (2) bark and branches of coniferous trees, (3) deadwood and (4) understory vegetation. Each microhabitat type was investigated for a similar amount of time in a rotating scheme as follows: a location was picked randomly and each spider-web visible in the vicinity was investigated further. The spider was first located and collected with a pooter, then the web with prey remains was subsequently collected and put in a vial together with the spider and a label with information on the microhabitat. Pairs of treatment plots and control plots were always searched consecutively on the same date. In order to also survey spider species living in the leaf litter, additional sampling was carried out with a litter sieve once per plot. Three 1 × 1 meter areas with at least 50% leaf litter coverage were selected in each study plot and all of the leaf litter inside was sieved for spiders. No prey records are present for these leaf-litter inhabiting spiders.

Identification.—All spiders and their prey were identified with the use of a stereo microscope (Leica Stereo Zoom S9) with magnifications between 15–90 times. Adult spiders were identified to species level using identification keys from araneae.unibe.ch (Nentwig et al. 2021) and Roberts (1996). Prey remains were identified to the following levels allowing a reliable classification: Acari, Araneae, Auchenorrhyncha, Brachycera, Coleoptera, Colembola, Diplopoidea, Formicidae, Heteroptera, Hymenoptera, Lepidoptera, Nematocera, Opiliones, Psocoptera, Stenorrhyncha and Thysanoptera (also see Arvidsson et al. 2020). Rare spider species were classified according to Platen et al. (1999).

Statistical analysis.—Permutational multivariate analysis of variance (PERMANOVA; Anderson 2014) was used to analyse all dependent variables in univariate (total spider abundance (adults and juveniles) & effective number of species (Chao et al. 2010), number of prey items per web and taxonomic richness of prey) and multivariate (vegetation structure, spider species composition & prey composition) models. The dependent variables for univariate models were transformed into resemblance matrices with pairwise distances between all samples based on Euclidean distances. The spider and prey composition data were transformed into resemblance matrices with pairwise distances between all samples based on Bray-Curtis similarities. Vegetation structure was transformed into a resemblance matrix with pairwise distances between all samples based on Gower similarities to account for the different scales of measurement in individual vegetation properties. By using Gower similarities, all vegetation properties were internally standardized to a range from 0–1 (Gower & Warren 2014). The random factor “Plot” (11 levels) and the fixed factors “Fence” (2 levels: with or without) and “Microhabitat” (5 levels: litter, deadwood, understory vegetation, coniferous and deciduous tree) were specified for the PERMANOVA models. PERMANOVA was then performed with type III sums of squares and 9999 permutations of residuals under a reduced model. Fixed factors with significant effects on spider species or prey order composition were further analysed for homogeneity of multivariate dispersions with distance-based tests using the same resemblance matrices as for the respective PERMANOVA model. Non-parametric rank-based Kruskal-Wallis tests were used to compare differences between microhabitats for individual prey order groups. Principal coordinates ordination (PCO) was used to visualize differences in vegetation structure and spider species composition based on the respective resemblance matrix. Spider species or microhabitat properties (see section sampling) with multiple correlation coefficients larger than 0.3
with PCO axes scores were considered as characteristic or common for certain factor levels. PERMANOVA models and ordinations were calculated with PRIMER 7 version 7.0.13 and the PERMANOVA add-on (PRIMER-e, Quest Research Limited, Auckland, New Zealand).

RESULTS

Vegetation.—The fence treatment affected the vegetation structure in the study plots significantly ($F_{1,10} = 4.72; P = 0.010$). Fenced plots on average had a higher density of trees with a height above 2m (mean ± standard deviation: 23.6 ± 9.5 vs. 15 ± 4.1 trees) and a higher percentage cover with leaf litter (47.6 ± 16.0 vs. 43.2 ± 19.1), but a lower percentage of bare ground (1.1 ± 1.8 vs. 5.8 ± 6.1) or deadwood cover (9.4 ± 4.2 vs. 14.5 ± 7.2) compared to unfenced plots (Fig. 1).

Spiders.—A total of 940 spiders from 75 species plus 136 unidentified juvenile individuals were collected from different microhabitats (deciduous or coniferous trees, deadwood, understory vegetation (all by hand-collection) or litter (by litter sieving)). The total abundance of spiders was not significantly affected by the presence of a fence ($F_{1,31} = 1.50; P = 0.259$), but differed significantly between microhabitats ($F_{4,31} = 37.89; P < 0.001$). The average number of spiders declined from litter (23.9 individuals) to deciduous tree (10.6) to understory (9.2) to deadwood (4.6) and coniferous tree (1.4) microhabitats. The effective number of spider species was not significantly affected by the presence of a fence ($F_{1,31} = 1.05; P = 0.331$), but differed significantly between microhabitats ($F_{4,31} = 74.29; P < 0.001$). The average number of effective species declined from litter (8.4 species) to deciduous tree (4.1) to understory (3.0) to deadwood (2.3) and coniferous tree (1.2) microhabitats. The species composition of spider communities did not differ significantly between fenced and unfenced plots ($F_{1,31} = 1.65; P = 0.112$), but differed significantly between microhabitat types ($F_{4,31} = 14.64; P < 0.001$; Fig. 2). Differences between spider communities in microhabitats did not primarily result from heterogeneity of multivariate dispersions ($F_{1,93} = 2.76, P = 0.056$) indicating that communities primarily differed in species composition and not in the magnitude of variation between plots.

Several spider species, including some from non-web building families, were frequently (in at least 10 study plots) and exclusively collected from litter microhabitats (due to the different sampling method): *Abacoproeces saltuum* (L. Koch, 1872) (Linyphiidae), *Euophrys frontalis* (Walekenaer, 1802) (Salticidae), *Hahnia ononidum* Simon, 1875 (Hahniidae), *Neon reticulatus* (Blackwall, 1853) (Salticidae), *Pelecopsis radicicola* (L. Koch, 1872) (Linyphiidae), *Phrurolithus festivus* (C. L. Koch, 1835)(Phrurolithidae), *Scotina celans* (Blackwall, 1841) (Liostracidae) and *Trocossa sp.*., whereas *Drapetisca socialis* (Sundevall, 1833) (Linyphiidae) and *Parasteatoda lunata* (Clerck, 1757) (Theridiidae) were exclusively collected from deciduous tree microhabitats in at least 10 study plots. *Linyphia triangularis* (Clerck, 1757) (Linyphiidae) was more common in deadwood and deciduous tree microhabitats than in the other three microhabitat types. *Tenuiphantes flavipes*
significant, in spider webs differed significantly between microhabitats (\(F_{3,17} = 2.01; P = 0.011\)), but not between fence treatments (\(F_{1,17} = 0.10; P = 0.990\)). Differences in prey composition at least partly resulted from heterogeneity of multivariate dispersion between microhabitat types (\(F_{3,66} = 5.28, P = 0.012\)) with the prey composition in understory vegetation being significantly more homogenous than in deadwood \((t = 3.11, P = 0.009)\) or coniferous tree \((t = 4.22, P = 0.001)\) habitats. The number of Thysanoptera (Kruskal-Wallis \(H = 14.34, P = 0.003\)) and Hymenoptera excl. Formicidae (Kruskal-Wallis \(H = 8.40, P = 0.038\)) prey items differed significantly between microhabitats. The number of Heteroptera prey items tended to differ between microhabitats (Kruskal-Wallis \(H = 6.51, P = 0.089\)). Thysanoptera prey were most common for spiders in the understory vegetation and on coniferous trees and least common for spiders on deciduous trees (Fig. 3a). Hymenoptera prey, excluding Formicidae, was most common for spiders on deciduous trees, less common for spiders on deadwood or in understory vegetation and absent from spider webs on coniferous trees (Fig. 3b). Heteroptera prey was most common in spider webs in the understory vegetation, less common in webs on deadwood and deciduous trees and absent from webs in coniferous trees (Fig. 3c).

DISCUSSION

Wildlife fences affected the structure of vegetation significantly, with more trees and a higher litter cover, but a lower bare ground and deadwood cover in fenced plots. The observed structural differences were expected, due to younger trees being protected from grazing and the ground being undisturbed by wild boars in fenced areas (see also Kirby 2001; Morecroft et al. 2001). Differences in vegetation structure were hypothesized to affect web-building spider assemblages, since web-building spider species often have different preferences for vegetation structure (Uetz 1991). These expectations were confirmed in the current study comparing web-building spider communities between different microhabitats. The limited effects of fencing on spider communities at the plot level in our study at least partly results from the standardized sampling protocol for web-building spiders and their prey. Microhabitats were not sampled proportionally to their occurrence in fenced and unfenced study plots, but sampling was standardized to similar sampling time for each microhabitat. The litter microhabitat had the highest spider abundance and diversity and a unique set of species exclusively occurred in the litter layer. Given the significantly higher litter cover in fenced plots, these diverse and unique communities would benefit from fencing at the plot level. In previous studies, the exclusion of deer also led to a higher abundance of understory vegetation and thereby to a greater abundance of web-building spiders (Takada et al. 2008; Roberson et al. 2016, but see Landsman & Bowman 2017). Bucher et al. (2021) however, observed lower abundances of sheet-web weavers in fenced plot that had higher understory vegetation. In the current study, however, the coverage of understory vegetation (grasses and herbs), did not differ significantly between fenced and unfenced plots and web-building spiders in these habitats always had a relatively high number of Thysanoptera prey items independent of the
presence of a fence. These results document the complexity of responses by forest-inhabiting spiders to wildlife fencing and highlight the importance to consider different vegetation properties from the litter layer (this study) to understory vegetation (Takada et al. 2008; Roberson et al. 2016) and vegetation heterogeneity and height up to 200 cm (Bucher et al. 2021) in future studies.

Fenced plots, however, had significantly fewer deadwood microhabitats. Activity of large mammals in unfenced plots may have caused this pattern due to direct damage to trees. Additionally, removal of deadwood during the construction of fences may have contributed to this difference. A range of web-building spider species benefited from the presence of deadwood microhabitats, further supporting its high value for arthropod diversity in general (Jabin et al. 2004), but also highlighting the context dependency of deadwood effects on arthropods (Floren et al. 2014). Webs of Tenuiphantes flavipes, for example, were frequently found on the lower parts of deadwood pieces, suggesting that unfenced plots support this species due to higher availability of suitable microhabitats. If deadwood was located close to the ground its rigid structure supported the construction of webs by larger species such as Agelena labyrinthica (Clerck, 1757) (Agelenidae) and Erfatgena atrica (C. L. Koch, 1843) (Agelenidae). If the area around deadwood offered open spaces, orb-web species such as Cyclosa conica (Pallas, 1772) (Araneidae) and Zilla didioda (Walckenaer, 1802) (Araneidae) utilized these microhabitats. Hymenoptera (excl. Formicidae) and Heteroptera prey was less frequently observed in webs of spiders in deadwood microhabitats. Hymenoptera and Heteroptera primarily utilize plant associated resources and therefore preferred understory vegetation as a microhabitat. In deadwood microhabitats, Thysanoptera prey was mainly observed in webs of orbweavers (Araneidae) or larger sheet-weavers (Linyphiidae). Compared to, for example, Hymenoptera prey (excl. Formicidae), Thysanoptera are often more randomly distributed in local habitats, as they are transported by wind and are not good, active fliers (Mound 1983).

Several common, forest-inhabiting spider species have rather broad habitat preferences, such as Linyphia triangularis and Neriene peltata (Wider, 1834) (Linyphiidae). Both species build rather large sheet webs attached to branches of trees and were therefore observed in both fenced and unfenced plots. The density of taller trees was significantly higher in fenced compared to unfenced plots, probably due to the lower intensity of browsing on saplings inside the fenced plots. Linyphia triangularis, Parasteatoda sp. and juvenile Dropepis socialis showed preferences for deciduous trees. Parasteatoda sp. webs were often observed between separate trunks of the same tree, while D. socialis was almost exclusively observed close to single small branches sticking out with a 90° angle from the main branch. Both these tree properties were more common for deciduous trees. Leptophantes minutus (Blackwall, 1833) (Linyphiidae), on the other hand, was only collected from the bark of coniferous trees. Korenko et al. (2011) in the Czech Republic and Halaj et al. (1998) in the US observed preferences of Linyphia triangularis for coniferous rather than deciduous trees. These results contradict observations in the current study in Germany and observations from Sweden (Arvidsson pers. obs.). According to Roberts (1996), Linyphia triangularis constructs webs on bushes or trees with sufficiently stable foliage and frequently occurs in both forest types. Microhabitat preferences of this common, cosmopolitan species may depend on geographic location and the availability of alternative habitats. Spiders in deciduous tree microhabitats captured a large number of hymenopteran prey while spiders in coniferous tree microhabitats did not. The previously explained preferences of web-building spider species for structural properties of deciduous trees may facilitate the construction of webs that are more suitable to capture larger flying prey.

Two closely related species with overlapping habitat preferences in the genus Linyphia co-occurred throughout study plots. During the beginning of the fieldwork in May adult individuals of Linyphia hortensis Sundevall, 1830 (Linyphiidae) were observed in the upper stratum of the understory vegetation, and individuals of the larger, co-occurring Linyphia triangularis were juvenile at this time and primarily occupied web sites at the bottom of understory vegetation. During the second sampling period in June, there was a complete shift in stratum utilization between these two species.

Conclusion.—While spider community or prey composition per microhabitat did not differ significantly between fenced and unfenced plots in the current study, it is evident that wildlife fencing altered the litter cover and vegetation structure of forests and will have indirect effects on spider communities and their role in forest food webs due to alteration of microhabitat availability. The abundance and diversity of spiders was highest in the litter layer and on deciduous trees and significantly higher litter coverage and more deciduous trees were observed in the fenced plots. These results suggest that herbivores may negatively affect spider communities due to effects on litter cover and younger deciduous trees. The studied forest showed a high value for spider conservation, including two red listed species, as it offered a wide range of microhabitats including deadwood as a valuable microhabitat for several spider species. The rather unique properties of temperate forest on sandy soil in the state of Brandenburg allowed heat-loving spider species (e.g., A. saltuum, Tapinocyba praecox (O. Pickard-Cambridge, 1873) (Linyphiidae) to co-occur with species which require more shaded or moist habitats (e.g., P. radicicola, Trochosa terricola Thorell, 1856) (Lycosidae).

ACKNOWLEDGMENTS

Thank you to the Zwillenberg-Tietz Foundation for funding this project. Thanks especially to Dr. Wicke for coordinating work at the Linde Research Station and Dr. Annighöfer, the coordinator of the long-term fencing project.

LITERATURE CITED

